Sparse SVM for Sufficient Data Reduction

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient Dimension Reduction for Longitudinal Data

Correlation structure contains important information about longitudinal data. Existing sufficient dimension reduction approaches assuming independence may lead to substantial loss of efficiency. We apply the quadratic inference function to incorporate the correlation information and apply the transformation method to recover the central subspace. The proposed estimators are shown to be consiste...

متن کامل

Effective dimension reduction for sparse functional data.

We propose a method of effective dimension reduction for functional data, emphasizing the sparse design where one observes only a few noisy and irregular measurements for some or all of the subjects. The proposed method borrows strength across the entire sample and provides a way to characterize the effective dimension reduction space, via functional cumulative slicing. Our theoretical study re...

متن کامل

The Sparse Data Reduction Engine

Sparse data and irregular data access patterns are hugely important to many applications, such as molecular dynamics and data analytics. Accelerating applications with these characteristics requires maximizing usable bandwidth at all levels of the memory hierarchy, reducing latency, maximizing reuse of moved data, and minimizing the amount the data is moved in the irst place. Many specialized d...

متن کامل

Use of Multi-category Proximal SVM for Data Set Reduction

In this paper we describe a method for data set reduction by effective use of Multi-category Proximal Support Vector Machine (MPSVM). By using the Linear MPSVM Formulation in an iterative manner we identify the outliers in the data set and eliminate them. A k-Nearest Neighbor (k-NN) classifier is able to classify points using this reduced data set without significant loss of accuracy. We presen...

متن کامل

A Proximal Approach for Sparse Multiclass SVM

Sparsity-inducing penalties are useful tools to design multiclass support vector machines (SVMs). In this paper, we propose a convex optimization approach for efficiently and exactly solving the multiclass SVM learning problem involving a sparse regularization and the multiclass hinge loss formulated by [1]. We provide two algorithms: the first one dealing with the hinge loss as a penalty term,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2021

ISSN: 0162-8828,2160-9292,1939-3539

DOI: 10.1109/tpami.2021.3075339